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Contrôle final - Mardi 7 janvier 2025
durée : 3 h

Le candidat attachera la plus grande importance à la clarté, à la précision et
à la concision de la rédaction. Dans toutes les questions, il sera tenu le plus

grand compte de la rigueur de la rédaction.
L’usage de tout document et de tout matériel électronique est interdit.

1 Anneaux
Préambule : Par anneau on entend anneau unitaire. On notera (a) l’idéal engendré

par un élément a d’un anneau commutatif.

Exercice 1. (Questions de cours) Soit R un anneau intègre. On note R∗ l’ensemble
des unités de R.

1. Rappeler la définition d’un élément premier et d’un élément irréductible de R.
2. Montrer que tout élément premier est irréductible.
3. Montrer que si p ∈ R est premier et u ∈ R∗, alors up est premier.
4. Montrer que si p1p2 · · · pn = uq1q2 · · · qm avec pi premiers, qj irréductibles et u ∈ R∗,

alorsm = n et il existe une bijection σ de {1, 2, . . . , n} tel que pi et qσ(i) sont associés
pour tout 1 ≤ i ≤ n. (Indication : On pourra procéder par récurrence sur n ≥ 1.)

Solution. 1. Un élément p ∈ R est dit premier s’il n’est ni nul ni inversible et si, pour tout
produit ab divisible par p, l’un des deux facteurs a ou b est divisible par p. Un élément
p ∈ R est dit irréductible si p /∈ R∗ ∪ {0} et si p = ab avec a, b ∈ R alors a ∈ R∗ ou
b ∈ R∗.

Solution. 2. Soit p ∈ R premier. Alors p /∈ R∗∪{0}. Montrons que si p = ab avec a, b ∈ R
alors a ∈ R∗ ou b ∈ R∗. Comme p est premier et p divise ab (1p = p = ab), il s’ensuit
que p divise a ou p divise b. Si p divise a, alors a = rp pour un certain r ∈ R. Ainsi,
1p = ab = rpb ou encore (1 − rb)p = 0. Comme R est un anneau intègre et p 6= 0, il
s’ensuit que 1− rb = 0 et donc b ∈ R∗. De même si p divise b on a que a ∈ R∗.

Solution. 3. Soit p ∈ R premier et u ∈ R∗. Montrons que up est premier. On remarque
que up /∈ R∗ ∪ {0}. Supposons que up divise un produit ab avec a, b ∈ R. Ainsi p divise
ab et donc p divise a ou p divise b. Or si p divise a, alors a = rp pour un certain r ∈ R.
Mais alors a = rp = 1rp = uu−1rp qui montre que up divise a. De même si p divise b
alors up divise b.

Solution. 4. On procède par récurrence sur n ≥ 1. Pour n = 1, on a p1 = uq1q2 · · · qm.
Comme p1 est premier et donc irréductible, on trouve que m = 1 et donc p1 = uq1 qui
montre que p1 et q1 sont associés.

On fixe n ≥ 1 et on suppose (hypothèse de récurrence) que si p1p2 · · · pn = uq1q2 · · · qm
avec pi premiers, qj irréductibles et u ∈ R∗, alors m = n et il existe une bijection
σ de {1, 2, . . . , n} tel que pi et qσ(i) sont associés pour tout 1 ≤ i ≤ n. On suppose
(∗) p1p2 · · · pn+1 = uq1q2 · · · qm. Comme p1 est premier et divise le produit uq1q2 · · · qm, il
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s’ensuit que p1 divise un des termes du produit. Or comme p1 ne divise pas u (sinon p1
serait inversible), on a que p1 divise un certain qj. Ainsi, quitte à échanger l’ordre des qj,
on peut supposer que p1 divise q1. Ainsi q1 = u1p1 avec u1 ∈ R∗ (car q1 est irréductible)
qui montre que p1 et q1 sont associés. On a donc (∗) p1p2 · · · pn+1 = uu1p1q2 · · · qm qui
implique p2 · · · pn+1 = u′q2 · · · qm avec u′ = uu1 ∈ R∗. Par application de l’hypothèse de
récurrence on obtient que m = n+ 1 et qu’il existe une bijection σ de {2, . . . , n+ 1} tel
que pi et qσ(i) sont associés pour tout 2 ≤ i ≤ n+ 1.

Exercice 2. Le but de cet exercice est de démontrer la caractérisation suivante des an-
neaux factoriels du à Irving Kaplansky : Un anneau intègre R est factoriel si et seulement
si tout idéal premier non-nul de R contient un élément premier. Vous pouvez utiliser les
résultats obtenus dans l’exercice précédent.

1. Montrer que si R est un anneau factoriel et P 6= (0) un idéal premier de R, alors P
contient un élément premier de R. (Rappel : Un idéal premier est en particulier
un idéal propre de R.)

On pose
S = R∗ ∪ {p1p2 · · · pn |n ≥ 1, pi ∈ R premiers}.

2. Montrer que R est factoriel si et seulement si S = R \ {0}.
3. Montrer que S est stable par produit : a, b ∈ S ⇒ ab ∈ S.
4. Montrer que pour tout a, b ∈ R, si ab ∈ S alors a ∈ S et b ∈ S.

On suppose dorénavant que R n’est pas factoriel et on montrera l’existence d’un
idéal premier P 6= (0) qui ne contient aucun élément premier de R.

5. Montrer que si R n’est pas factoriel, alors il existe un élément x0 ∈ R non-nul avec
x0 /∈ S. En déduire que (x0) ∩ S = ∅.

6. On pose
Z = {I ⊆ R | I un idéal de R contenant x0, I ∩ S = ∅}.

Montrer par application du lemme de Zorn que Z admet un élément P0 maximal
par l’inclusion.

7. Montrer que P0 est un idéal premier non-nul de R.
8. En déduire la caractérisation de Kaplansky.

Solution. 1. On suppose R factoriel. Soit P un idéal premier non-nul de R. Montrons que
P contient un élément premier de R. Soit x ∈ P avec x 6= 0. Comme P est premier et
donc en particulier un idéal propre de R, on a que x n’est pas inversible. Ainsi comme R
est factoriel on a x = p1p2 · · · pn avec pi ∈ R irréductibles et donc premiers (car dans un
anneau factoriel un élément est premier si et seulement si il est irréductible). Or comme
p1p2 · · · pn = x ∈ P et P est premier, il s’ensuit qu’il existe 1 ≤ i ≤ n avec pi ∈ P. Ainsi
P contient l’élément premier pi.
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Solution. 2. On suppose d’abord R factoriel. Alors, pour tout x ∈ R\{0} on a que x ∈ R∗
ou x = p1p2 · · · pn avec pi irréductibles. Si x ∈ R∗ alors x ∈ S, et si x = p1p2 · · · pn avec
pi irréductibles (et donc premiers), alors x ∈ S car x est un produit d’éléments premiers
de R. Cela montre que R \ {0} ⊆ S et comme 0 /∈ S on a que S ⊆ R \ {0}.

Supposons que S = R \ {0} et montrons que R est factoriel. Il faut d’abord montrer
que tout x ∈ R \ (R∗ ∪{0}) peut s’écrire comme produit d’rréductibles. Or comme x ∈ S
mais x /∈ R∗, il s’ensuit que x peut s’écrire comme un produit p1p2 · · · pn avec pi premiers.
Mais d’après la question 2. de l’exercice prédédent, tout élément premier est irréductible.
Ainsi x = p1p2 · · · pn avec pi irréductibles.

Il reste à montrer que si q1q2 · · · qk = r1r2 · · · rl avec qi et rj irréductibles, alors k = l et
il existe une bijection de {1, 2, . . . , k} tel que qi et rσ(i) sont associés pour tout 1 ≤ i ≤ k.
On pose x = q1q2 · · · qk = r1r2 · · · rl. Comme x 6= 0 on a que x ∈ S, et comme x /∈ R∗, il
s’ensuit que x = p1p2 · · · pn avec pi premiers. Par application de la question 4. de l’exercice
préceedent, on a que n = k = r et qu’il existe deux bijections σ, τ de {1, 2, . . . , n} tels
que pi, qσ(i) et rτ(i) sont associés pour tout 1 ≤ i ≤ n. Ainsi pour tout 1 ≤ j ≤ k on a qj
et rτ(σ−1(j) sont associés.

Solution. 3. Montrons que pour tout a, b ∈ S on a ab ∈ S. Si a, b ∈ R∗, alors ab ∈ R∗ ⊆ S.
Si a ∈ R∗ et b = p1p2 · · · pn avec pi premiers, alors ab = ap1p2 · · · pn ∈ S car ap1 est
premier (voir question 3. de l’exercice 1). De même si b ∈ R∗ et a = p1p2 · · · pn avec pi
premiers, alors ab ∈ S. Et si a = p1p2 · · · pn et b = q1q2 · · · qm avec pi, qj premiers, alors
ab = p1p2 · · · pn · q1q2 · · · qm ∈ S.

Solution. 4. Soient a, b ∈ R tels que ab ∈ S. Montrons que a ∈ S et b ∈ S. Si ab ∈ R∗
alors abr = 1 pour un certain r ∈ R qui montre que a et b sont inversibles et donc dans
S. Si ab = p1p2 · · · pn avec pi premiers, alors quitte à échanger l’ordre des pi, on peut
supposer que p1 · · · pk divise a et pk+1 · · · pn divise b pour un certain 0 ≤ k ≤ n. Ainsi a =
rp1 · · · pk et b = spk+1 · · · pn avec r, s ∈ R. Or, p1p2 · · · pn = ab = rp1 · · · pk · spk+1 · · · pn =
rsp1p2 · · · pn et comme R est intègre, il s’ensuit que rs = 1 et donc r, s ∈ R∗ ⊆ S. Ainsi
a ∈ S et b ∈ S.

Solution. 5. Par application de la question 5., si R n’est pas factoriel alors S est une partie
propre de R \ {0} et donc il existe x0 ∈ R \ {0} avec x0 /∈ S. Montrons que (x0)∩ S = ∅.
En fait, si rx0 ∈ S pour un certain r ∈ R, alors d’après la question 4. on aurait r ∈ S et
x0 ∈ S qui est une contradiction car on avait supposé x0 /∈ S. Ainsi (x0 ∩ S = ∅.

Solution. 6. On remarque que Z est un ensemble non-vide (car (x0) ∈ Z) partiellement
ordonné par l’inclusion ⊆ . Montrons que toute chaîne C de Z possède un majorant dans
Z. Pour cela il suffit de prendre

⋃
C. D’abord on a que A ⊆

⋃
C pour tout A ∈ C. De plus,

omme C est une chaîne de Z, on vérifie facilement que
⋃
C et un idéal de R contenant

x0. Ainsi pour montrer que
⋃
C ∈ Z il suffit de montrer que

⋃
C ∩ S = ∅. Supposons au

contraire que
⋃
C ∩ S 6= ∅. Soit a ∈

⋃
C ∩ S. Ainsi il existe A ∈ C avec a ∈ A. Mais alors

A ∩ S 6= ∅ (car a ∈ A ∩ S) qui est une contradiction car A ∈ C ⊆ Z. Ayant montré que
toute chaîne C de Z admet un majorant dans Z, on peut appliquer le lemme de Zorn
pour obtenir l’existence d’un élément P0 ∈ Z qui est maximal par l’inclusion.
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Solution. 7. Montrons que P0 est un idéal premier non-nul de R. Or comme P0 est dans
Z on a que P0 est un idéal non-nul (car x0 ∈ P0) et propre (car P0 ∩ S = ∅ et donc en
particulier 1 /∈ P0). Pour montrer que P0 est premier il reste à montrer que pour tout
a, b ∈ R, si ab ∈ P0 alors a ∈ P0 ou b ∈ P0. Supposons au contraire que ab ∈ P0 avec
a /∈ P0 et b /∈ P0. Alors l’idéal P0 est proprement inclus dans les idéaux P0 + (a) et
P0+(b). Ainsi par maximalité de P0 dans Z on a que P0+(a) /∈ Z et P0+(b) /∈ Z. Ainsi
(P0 + (a)) ∩ S 6= ∅ et (P0 + (b)) ∩ S 6= ∅. Soit x ∈ (P0 + (a)) ∩ S et y ∈ (P0 + (b)) ∩ S.
Alors on peut écrire x = p + ra et y = p′ + r′b avec p, p′ ∈ P0 et r, r′ ∈ R. Mais alors
xy = p′′ + rr′ab avec p′′ ∈ P0. Or, xy ∈ S par la question 3. et comme ab ∈ P0 on a que
p′′ + rr′ab ∈ P0 qui montre que P0 ∩ S 6= ∅ (car xy ∈ P0 ∩ S) qui est une contradiction
car P0 ∈ Z. Cela montre que si ab ∈ P0 alors a ∈ P0 ou b ∈ P0 et donc P0 est un idéal
premier de R.

Solution. 8. On vient de montrer que si R n’est pas factoriel, alors il existe un idéal
premier P0 6= (0) de R tel que P0 ∩ S = ∅. En particulier, P0 ne contient aucun élément
premier de R car tout élément premier de R est dans S. Dans la question 1. on a montré
que si R est factoriel alors tout idéal premier P 6= (0) de R contient un élément premier
de R. Ainsi on retrouve la caractérisation de Kaplansky des anneaux factoriels énoncée
au début de l’exercice.

2 Corps
Préambule : Pour p premier, on note Fp le corps Z/pZ. Il sera admis que le groupe

multiplicative F×p = Fp \ {0} est cyclique. Étant donné une extension finie de corps E/F,
le degré de E sur F (c.-à.-d. la dimension de E comme espace vectoriel sur F ) sera noté
par (E/F ).

Exercice 3. On pose g(x) = x4 + 1.

1. Montrer que g(x) est irréductible dans Q[x].

2. Montrer que E = Q(i,
√
2) est un corps de rupture de g(x) sur Q.

3. Trouver un corps de décomposition K de g(x) sur Q ainsi que le degré de K sur Q.
4. Montrer que g(x) n’est pas irréductible dans R[x] et trouver une factorisation de
g(x) dans R[x] comme produit d’irréductibles.

On propose de montrer que pour tout nombre premier p, le polynome g(x) n’est
pas irréductible dans Fp[x].

5. Montrer que si −1 est un carré dans Fp (par exemple quand p = 2) alors g(x) peut
s’écrire comme une différence de deux carrés et ainsi g(x) peut se factoriser dans
Fp[x] comme produit de deux polynômes de degré 2.

6. Montrer que si p est impair et que 2 ou −2 est un carré dans Fp, alors g(x) peut
s’écrire comme une différence de deux carrés et ainsi g(x) peut se factoriser dans
Fp[x] comme produit de deux polynômes de degré 2.
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7. Montrer que si p est impair, alors parmi −1, 2 et −2 il y a au moins un qui est
un carré dans Fp. En déduire que pour tout nombre premier p, g(x) n’est pas
irréductible dans Fp[x].

Solution. 1. Il suffit de montrer que g(x) est irréductible dans Z[x]. On remarque d’abord
que g(x) = x4 + 1 n’a pas de racines dans R (sinon on aurait a4 = −1 pour un certain
a ∈ R). Ainsi si g(x) peut se factoriser dans Z[x] (ou même dans R[x]) on aurait g(x) =
p(x)q(x) avec p(x), q(x) de degré 2. On pose p(x) = x2 + ax + b et q(x) = x2 + cx + d
avec a, b, c, d ∈ Z. On comparant le nombre de x3 des deux côtés on trouve a+ c = 0 ou
a = −c. On comparant les x2 des deux côtés on trouve b+ d+ ac = 0 ou b+ d = a2. On
comparant les x des deux côtés on trouve ad+ bc = 0 ou a(d− b) = 0 qui implique a = 0
ou b = d. Et on a bd = 1. Ainsi si a = 0 on obtient b2 = −1 qui est impossible. D’autre
part si b = d alors 1 = bd = b2 et donc b = ±1. Mais cela donne a2 = b + d = 2b = ±2
qui est impossible dans Z (mais possible dans R.) . Ainsi g(x) est irréductible dans Z[x]
et donc irréductible dans Q[x].

On remarque que si on suppose p(x), q(x) ∈ R[x], alors si en posant b = d = 1 et
a =
√
2 et c = −

√
2, on obtient la factorisation

x4 + 1 = (x2 +
√
2x+ 1)(x2 −

√
2x+ 1) ∈ R[x].

De plus ces deux polynômes dans R[x] sont irréductibles (car ils n’ont pas de racines
dans R). On peut utiliser cette factorisation de g(x) dans R[x] pour donner une autre
démonstration que g(x) est irréductible dans Q[x]. En fait, cette factorisation de g(x)
comme produit d’irréductibles dans R[x] est unique et donc s’il y avait une factorisation
de g(x) dans Q[x] ⊆ R[x], elle donnerait lieu à la même factorisation que celle dans R[x].
Mais

√
2 /∈ Q.

Solution. 2. Dans C on peut factoriser

g(x) = x4 + 1 = (x2 − i)(x2 + i) = (x− ζ)(x+ ζ)(x− ζ3)(x+ ζ3)

où ζ = e
2πi
4 . Ainsi Q(ζ) est un corps de rupture de g(x) sur Q. Il reste à montrer

que Q(ζ) = Q(i,
√
2). Or, ζ = 1+i√

2
∈ Q(i,

√
2), et donc Q(ζ) ⊆ Q(i,

√
2). On a que

i = ζ2 ∈ Q(ζ) et de plus comme ζ−1 =
√
2

1+i
∈ Q(ζ) et 1+ i ∈ Q(ζ) on obtient

√
2 ∈ Q(ζ).

Ayant montré que i,
√
2 ∈ Q(ζ), on obtient Q(i,

√
2) ⊆ Q(ζ).

Solution. 3. Un corps de décomposition K de g(x) est une extension minimale de Q
contenant toutes les racines de g(x). Ainsi, K = Q(±ζ,±ζ3) = Q(ζ) qui est un corps de
rupture du polynôme irréductible g(x). Ainsi (K/Q) = deg g(x) = 4.

Solution. 4. Voir la fin de la solution à la question 1.

Solution. 5. Si −1 = a2 avec a ∈ Fp, alors

g(x) = x4 + 1 = x4 − (−1) = x4 − a2 = (x2 − a)(x2 + a).
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Solution. 6. Si p est impair et 2 = a2 avec a ∈ Fp alors

g(x) = x4 + 1 = x4 + 2x2 + 1− 2x2 = (x2 + 1)2 − (ax)2 = (x2 + 1 + ax)(x2 + 1− ax).

Si −2 = a2 avec a ∈ Fp alors

g(x) = x4 + 1 = x4 − 2x2 + 1 + 2x2 = (x2 − 1)2 − (ax)2 = (x2 − 1 + ax)(x2 − 1− ax).

Solution. 7. On suppose p premier impair. Soit a ∈ F×p est générateur du groupe cyclique
F×p . Si −1 et 2 ne sont pas des carrés dans Fp alors on a que −1 = an et 2 = am avec m
et n impairs. Ainsi −2 = am+n = a2k car m+ n est pair. Par application des questions 5.
et 6. on a montré que pour tout nombre premier p, le polynôme g(x) peut se factoriser
comme produit de deux polynômes de degré 2 sur Fp et donc n’est pas irréductible sur
Fp.

Exercice 4. On pose f(x) = x4 + x3 − 5x2 + 3x + 1. On remarque que f(0) = f(1) =
f(−3) = 1.

1. Montrer que si f(x) = p(x)q(x) avec p(x), q(x) ∈ Z[x], alors p(x) = q(x).

2. En déduire que f(x) est irréductible dans Z[x]. Indication : On remarque que
f(−1) = −7 < 0.

3. En déduire que f(x) est irréductible dans Q[x] et que Q[x]/(f(x)) est un corps de
rupture de f(x) sur Q.

4. On pose K = Q(α) où α ∈ C est une racine de f(x). Soit g(x) ∈ Q[x] un polynôme
irréductible de degré 3. Montrer que g(x) n’a pas de racines dans K.

Solution. 1. On suppose que f(x) = p(x)q(x) avec p(x), q(x) ∈ Z[x]. Or comme f(0) =
f(1) = f(−3) = 1 on a que p(a) = q(a) = ±1 pour tout a ∈ {0, 1,−3}. Ainsi p(x) et q(x)
sont de degrés ≥ 2 et donc on a que deg p(x) = deg q(x) = 2. Mais comme p(a) = q(a)
pour trois réels distincts (a ∈ {0, 1,−3}) on a que p(x) = q(x).

Solution. 2. On a vu dans la question précédente que si f(x) = p(x)q(x) avec p(x), q(x) ∈
Z[x] alors p(x) = q(x) qui veut dire que f(x) = p2(x). Mais comme f(−1) = −7 < 0, il
s’ensuit que f(x) n’est pas un carré. Cela montre que f(x) est irréductible dans Z[x].

Solution. 3. Comme f(x) est irréductible dans Z[x], par application du lemme de Gauss
il s’ensuit que f(x) est irréductible dans Q[x]. Ainsi (d’après les résultats de cours)
Q[x]/(f(x)) est un corps de rupture de f(x) sur Q.

Solution. 4. On pose K = Q(α) où α ∈ C est une racine de f(x). Alors K est un corps
de rupture du polynôme irréductible f(x) sur Q. Ainsi (K/Q) = deg f(x) = 4. Or, si
β ∈ K est racine d’un polynôme irréductible g(x) ∈ Q[x] de degré 3, alors on aurait
Q ⊆ Q(β) ⊆ K avec (Q(β)/Q) = 3. Mais alors 4 = (K/Q) = (K/Q(β))(Q(β)/Q) qui est
une contradiction car 4 n’est pas divisible pas 3.
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3 Représentations de groupes

Préambule : Par représentation d’un groupe fini G on entendra un morphism ρV :
G→ GL(V ) où V est un C-espace vectoriel non-nul de dimension finie. La dimension de
V est appelée le degré de la représentation ρV .

Exercice 5. On pose G = 〈a, b, c | a3 = b3 = c3 = 1 ; ac = ca ; bc = cb ; c = b−1aba−1〉. Il
sera admis que G est un groupe non-abélien d’ordre 27 ayant 11 classes de conjugaison.
De plus tout g ∈ G peut s’écrire de manière unique sous la forme g = cibjak avec
0 ≤ i, j, k ≤ 2.

1. Montrer que pour toute représentation irréductible ρ : G → GL(V ), on a que le
degré de ρ est inférieur ou égal à 3.

2. Montrer que G admet neuf représentations de degré 1, aucune représentation irré-
ductible de degré 2, et deux représentations irréductibles de degré 3. On notera ρi
(1 ≤ 1 ≤ 9) les neuf caractères de degré 1 (avec ρ1 la représentation triviale) et χj
(j = 1, 2) les deux caractères irréductibles de G de degré 3.

3. Déterminer les neuf représentations ρi de G de degré 1. Il suffit de préciser les
valeurs ρi(a), ρi(b) et ρi(c).

4. Montrer que le centre Z(G) = {1, c, c2}. En déduire que {1}, {c}, {c2} sont des
classes de conjugaison.

5. On pose

ω = 2
2πi
3 =

−1 +
√
3i

2
.

Montrer que pour tout g ∈ G \ {1, c, c2}, ils existent 2 ≤ i, j ≤ 9 tels que ρi(g) = ω
et ρj(g) = ω2.

6. En déduire que χj(g) = 0 pour tout g ∈ G \ {1, c, c2} et j = 1, 2. Rappel : Le
produit d’un caractère de degré 1 avec un caractère irréductible est un caractère
irréductible.

7. Montrer qu’il existe un caractère irréductible χ de G tel que χ(c) /∈ R. Indication :
Si χ(c) ∈ R, alors χ(c2) = χ(c). Pourquoi ?

8. En déduire que χj(c) /∈ R pour j = 1, 2 et que χ2(g) = χ1(g) pour tout g ∈ G.
9. Montrer que

χ1(c) =
−3± 3

√
3i

2
∈ {3ω, 3ω2}.

10. Bonus : Compléter la table des caractères de G sans calculer explicitement les
classes de conjugaison. Il faudra juste distinguer les classes de cardinalité 1 de
{1, c, c2}. Les autres classes on pourra les noter [g4], [g5], . . . , [g11].

Solution. 1. G admet 11 classes de conjugaison et donc 11 représentations irréductibles.
De plus, la somme des carrés des degrés des représentations irréductibles est égal à 27 qui
est |G|. Ainsi, s’il y avait une représentation irréductible de degré 4, alors on aurait que
11 = 27− 16 = d21 + d22 + · · ·+ d210 avec di ∈ N∗ qui est impossible. De même, G n’admet
pas de représentations irréductibles de degré ≥ 5.
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Solution. 2. Pour 1 ≤ i ≤ 3, on note ni le nombre de représentations irréductibles de G
de degré i. On a ainsi que n1+4n2+9n3 = 27 et n1+n2+n3 = 11. Ainsi 3n2+8n3 = 16
et donc n2 est divisible par 8 qui implique (par la première équation) que n2 = 0. Ainsi
n3 = 2 et donc n1 = 11− 2 = 9.

Solution. 3. Soit ρ : G→ C∗ une représentation de degré 1. One pose α = ρ(a), β = ρ(b)
et γ = ρ(c). Ainsi par application des relations dans G on trouve α3 = β3 = γ3 = 1 et
γ = β−1αβα−1 = 1. On note ω = e

2πi
3 . Ainsi, on a que α, β ∈ {1, ω, ω2} et γ = 1. Comme

on a 3 choix pour α et 3 choix pour β on retrouve les 9 caractères de degré 1 dans la
question précédente.

Solution. 4. On remarque dans les relations de G que l’élément c commute avec a et b.
Comme G est engendré par a, b, c, il s’ensuit que c (et donc aussi c2) est dans le centre
de G. Ainsi {1, c, c2} ⊆ Z(G). Montrons que |Z(G)| = 3. Comme G est non-abélien, si
|Z(G)| > 3, on aurait que |Z(G)| = 9. Si |Z(G)| = 9, alors pour tout x ∈ G \ Z(G) on
aurait que |C(x)| = 27 où C(x) = {g ∈ G | gx = xg}. En fait Z(G) ∪ {x} ⊆ C(x) et
donc |C(x)| ≥ 10. D’autre part, comme C(x) est un sous-groupe de G, son cardinal divise
27. Or, si |C(x)| = 27, alors C(x) = G et donc x ∈ Z(G), une contradiction. Pour tout
z ∈ Z(G) on a que la classe de conjugaison [z] = {gzg−1 | g ∈ G} = {z}.

Solution. 5. Soit g ∈ G\{1, c, c2}. Alors on peut écrire g = crbsat avec avec 0 ≤ r, s, t ≤ 2
et s 6= 0 ou t 6= 0. On peut supposer que s 6= 0 et donc s = 1, 2. On pose ρ, ρ′ : G → C∗
avec ρ(a) = ρ(c) = 1 et ρ(b) = ω et ρ′(a) = ρ′(c) = 1 et ρ′(b) = ω2. Ainsi, si s = 1, il
suffit de prendre ρi = ρ et ρj = ρ′ et si s = 2 on prends ρi = ρ′ et ρj = ρ.

Solution. 6. Supposons au contraire qu’il existe g ∈ G \ {1, c, c2} et un caractère irréduc-
tible χ de G de degré 3 tel que χ(g) 6= 0. Par la question précédente il existe 2 ≤ i, j ≤ 9
tels que ρi(g) = ω et ρj(g) = ω2. Ainsi χ, piχ et ρjχ sont trois caractères irréductibles
de degré 3 distincts (car χ(g), ρi(g)χ(g) = ωχ(g) et ρj(g)χ(g) = ω2χ(g) sont deux à
deux distincts). Cela est en contradiction avec la question 2 car G admet seulement deux
caractères irréductibles de degré 3.

Solution. 7. Supposons au contraire que χ(c) ∈ R pour tout caractère irréductible χ de
G. Alors χ(c2) = χ(c−1) = χ(c) = χ(c). Ainsi, dans la table des caractères de G on
aurait que la colonne correspondant à la classe de conjugaison {c} est égal à la colonne
correspondant à la classe de conjugaison {c2}. Cela est une contradiction car les colonnes
dans la table des caractères de G sont orthonormaux.

Solution. 8. Dans la question 3. on a montré que ρi(c) = 1 ∈ R pour tout 1 ≤ i ≤ 9. Ainsi
par application de la question 7., il s’ensuit que χ1(c) /∈ R ou χ2(c) /∈ R. On peut supposer
que χ1(c) /∈ R. Ainsi on pose χ1(c) = z = r + si et χ2(c) = z′ = r′ + s′i avec s 6= 0. Or,
l’orthogonalité des colonnes {1} et {c} donne 9 + 3z + 3z′ = 0 ainsi z + z′ = −3 ∈ R et
donc s′ = −s. D’autre part l’orthogonalité des colonnes {c} et {c2} donne 9+z2+z′2 = 0
et donc 0 = Im(z2 + z′2) = 2s(r − r′). Ainsi r = r′ et donc z′ = z, c.à.d., χ2(c) = χ1(c).
On a aussi que χ1(c

2) = χ1(c) = χ2(c) et χ2(c
2) = χ1(c). Pour tout g ∈ G \ {1, c, c2} on

a χj(g) = 0 pour j = 1, 2. Ainsi χ1(g) = χ2(g) pour tout g ∈ G.
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Solution. 9. Dans la question précédente on a montré que χ1(c) + χ2(c) = z + z′ =
z + z = 2r = −3 et donc r = −3/2. En prenant le produit scalaire de la colonne
{c} avec elle même on trouve 27 = 9 + |z|2 + |z|2 = 9 + 2|z|2 et donc |z| = 3. Ainsi
s = ±

√
32 − (−3/2)2 = ±

√
27/4 = ±3

√
3/2.


