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Controle final - Mardi 7 janvier 2025
durée : 3 h
Le candidat attachera la plus grande importance a la clarté, a la précision et
a la concision de la rédaction. Dans toutes les questions, il sera tenu le plus
grand compte de la rigueur de la rédaction.
L’usage de tout document et de tout matériel électronique est interdit.

1 Anneaux

Préambule : Par anneau on entend anneau unitaire. On notera (a) 'idéal engendré
par un élément a d’un anneau commutatif.

Exercice 1. (Questions de cours) Soit R un anneau intégre. On note R* 1’ensemble
des unités de R.

1. Rappeler la définition d’un élément premier et d’un élément wrréductible de R.
2. Montrer que tout élément premier est irréductible.

3. Montrer que si p € R est premier et u € R*, alors up est premier.

4.

Montrer que si pips2 - - - pn = uq1G2 - - - ¢, @Vec p; premiers, g; irréductibles et u € R*,
alors m = n et il existe une bijection o de {1,2,...,n} tel que p; et g,(;) sont associés
pour tout 1 < i < n. (Indication : On pourra procéder par récurrence sur n > 1.)

Solution. 1. Un élément p € R est dit premier s’il n’est ni nul ni inversible et si, pour tout
produit ab divisible par p, I'un des deux facteurs a ou b est divisible par p. Un élément
p € R est dit irréductible si p ¢ R* U {0} et si p = ab avec a,b € R alors a € R* ou
be R O

Solution. 2. Soit p € R premier. Alors p ¢ R*U{0}. Montrons que si p = ab avec a,b € R
alors a € R* ou b € R*. Comme p est premier et p divise ab (1p = p = ab), il s’ensuit
que p divise a ou p divise b. Si p divise a, alors a = rp pour un certain r € R. Ainsi,
Ip = ab = rpb ou encore (1 — rb)p = 0. Comme R est un anneau intégre et p # 0, il
s’ensuit que 1 —rb =0 et donc b € R*. De méme si p divise b on a que a € R*. O

Solution. 3. Soit p € R premier et u € R*. Montrons que up est premier. On remarque
que up ¢ R*U{0}. Supposons que up divise un produit ab avec a,b € R. Ainsi p divise
ab et donc p divise a ou p divise b. Or si p divise a, alors a = rp pour un certain r € R.
Mais alors a = rp = 1rp = uwu"'rp qui montre que up divise a. De méme si p divise b
alors up divise b. O

Solution. 4. On procéde par récurrence sur n > 1. Pour n = 1, on a p; = uq1q2 - - * ¢pm.
Comme p; est premier et donc irréductible, on trouve que m = 1 et donc p; = ug; qui
montre que p; et ¢; sont associés.

On fixe n > 1 et on suppose (hypothése de récurrence) que si p1ps -« pn = uqiGe - * - Gm
avec p; premiers, ¢; irréductibles et u € R*, alors m = n et il existe une bijection
o de {1,2,...,n} tel que p; et g,;) sont associés pour tout 1 < 7 < n. On suppose
(%) P1p2 - Pne1 = Uq1G2 - - + ¢ Comme py est premier et divise le produit ugqiqs - -+ ¢, il
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s’ensuit que p; divise un des termes du produit. Or comme p; ne divise pas u (sinon p;
serait inversible), on a que p; divise un certain ¢;. Ainsi, quitte & échanger 'ordre des g;,
on peut supposer que p; divise ¢;. Ainsi ¢; = u1p; avec u; € R* (car ¢; est irréductible)
qui montre que p; et ¢; sont associés. On a donc () p1ps -« Ppr1 = UUIP1G2 -« * @ qui
implique pg -+ ppy1 = U'qe -+ ¢ avec v’ = uuy; € R*. Par application de I'’hypothése de
récurrence on obtient que m = n + 1 et qu’il existe une bijection o de {2,...,n + 1} tel
que p; et gq(;) sont associés pour tout 2 <1 <n+ 1. [

Exercice 2. Le but de cet exercice est de démontrer la caractérisation suivante des an-
neaux factoriels du a Irving Kaplansky : Un anneau intégre R est factoriel si et seulement
si tout idéal premier non-nul de R contient un élément premier. Vous pouvez utiliser les
résultats obtenus dans I’exercice précédent.

1. Montrer que si R est un anneau factoriel et P # (0) un idéal premier de R, alors P
contient un élément premier de R. (Rappel : Un idéal premier est en particulier
un idéal propre de R.)

On pose
S=R"U{pip2-- pn|n >1,p; € R premiers}.

2. Montrer que R est factoriel si et seulement si S = R\ {0}.
3. Montrer que S est stable par produit : a,b € S = ab € S.
4. Montrer que pour tout a,b € R, siabe S alorsa € Setbe S.

On suppose dorénavant que R n’est pas factoriel et on montrera l'existence d’un
idéal premier P # (0) qui ne contient aucun élément premier de R.

5. Montrer que si R n’est pas factoriel, alors il existe un élément xy € R non-nul avec
xo ¢ S. En déduire que (x9) NS = 0.

6. On pose
Z ={I C R|I un idéal de R contenant xy, I NS = 0}.

Montrer par application du lemme de Zorn que Z admet un élément Fy maximal
par l'inclusion.

7. Montrer que Fy est un idéal premier non-nul de R.

8. En déduire la caractérisation de Kaplansky.

Solution. 1. On suppose R factoriel. Soit P un idéal premier non-nul de R. Montrons que
P contient un élément premier de R. Soit z € P avec x # 0. Comme P est premier et
donc en particulier un idéal propre de R, on a que x n’est pas inversible. Ainsi comme R
est factoriel on a © = pipy - - - p, avec p; € R irréductibles et donc premiers (car dans un
anneau factoriel un élément est premier si et seulement si il est irréductible). Or comme
pip2 - Pn = ¢ € P et P est premier, il s’ensuit qu’il existe 1 < i < n avec p; € P. Ainsi
P contient I’élément premier p;. O
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Solution. 2. On suppose d’abord R factoriel. Alors, pour tout © € R\ {0} on a que x € R*
ou T = p1ps - - - P, avec p; irréductibles. Si x € R* alors © € S, et si x = p1py - - - p, avec
p; irréductibles (et donc premiers), alors x € S car = est un produit d’éléments premiers
de R. Cela montre que R\ {0} C S et comme 0 ¢ S on a que S C R\ {0}.

Supposons que S = R\ {0} et montrons que R est factoriel. Il faut d’abord montrer
que tout x € R\ (R*U{0}) peut s’écrire comme produit d’rréductibles. Or comme z € S
mais x ¢ R*, il s’ensuit que = peut s’écrire comme un produit pips - - - p, avec p; premiers.
Mais d’apres la question 2. de I'exercice prédédent, tout élément premier est irréductible.
Ainsi x = p1ps - - - p,, avec p; irréductibles.

Il reste & montrer que si qiqa - - - g = 11712 - - - 17 avec ¢; et r; irréductibles, alors £ = [ et
il existe une bijection de {1,2,...,k} tel que g; et r,(; sont associés pour tout 1 <1 < k.
On pose * = q1q2 -+ - qx = 1172+ - - 1;. Comme = # 0 on a que x € S, et comme x ¢ R*, il
s’ensuit que x = p1ps - - - p, avec p; premiers. Par application de la question 4. de I’exercice

préceedent, on a que n = k = r et qu’il existe deux bijections o, 7 de {1,2,...,n} tels
que p;, ¢o(i) et 7-(;) sont associés pour tout 1 <7 < n. Ainsi pour tout 1 < j <k on a g
et 7-(o-1(;) sont associés. ]

Solution. 3. Montrons que pour tout a,b € Sonaab e S.Sia,be R, alorsabe R* C S.
Sia € R et b = pipy---p, avec p; premiers, alors ab = apips---p, € S car ap; est
premier (voir question 3. de l'exercice 1). De méme si b € R* et a = pips -+ p, avec p;
premiers, alors ab € S. Et si a = p1pa---pn et b = qiq2 - - - ¢, avec p;, ¢; premiers, alors

ab=pip2-Pn- 12 G € S. O

Solution. 4. Soient a,b € R tels que ab € S. Montrons que a € S et b € S. Si ab € R*
alors abr = 1 pour un certain » € R qui montre que a et b sont inversibles et donc dans
S. Si ab = pipy---p, avec p; premiers, alors quitte a échanger 'ordre des p;, on peut
supposer que py - - - pg divise a et pyyq - - - p, divise b pour un certain 0 < k£ < n. Ainsi a =
Tp1- P et b= spry1-pyavecr, s € R.Or, pipy---pp =ab=7rpy-- P SPks1- Pn =
rspips - - - pn €t comme R est intégre, il s’ensuit que rs = 1 et donc r,s € R* C S. Ainsi
aceSetbes. 0

Solution. 5. Par application de la question 5., si R n’est pas factoriel alors S est une partie
propre de R\ {0} et donc il existe 9 € R\ {0} avec zy ¢ S. Montrons que (zy) NS = 0.
En fait, si rzg € S pour un certain r € R, alors d’aprés la question 4. on aurait r € S et
xo € S qui est une contradiction car on avait supposé o ¢ S. Ainsi (xo NS = 0. O]

Solution. 6. On remarque que Z est un ensemble non-vide (car (z) € Z) partiellement
ordonné par l'inclusion C . Montrons que toute chaine C de Z posséde un majorant dans
Z. Pour cela il suffit de prendre | JC. D’abord on a que A C |JC pour tout A € C. De plus,
omme C est une chaine de Z, on vérifie facilement que |JC et un idéal de R contenant
xo. Ainsi pour montrer que | JC € Z il suffit de montrer que | JC NS = (). Supposons au
contraire que [JCN S # 0. Soit a € [JC N S. Ainsi il existe A € C avec a € A. Mais alors
ANS # (car a € ANS) qui est une contradiction car A € C C Z. Ayant montré que
toute chaine C de Z admet un majorant dans Z, on peut appliquer le lemme de Zorn
pour obtenir I'existence d'un élément Fy € Z qui est maximal par 'inclusion. O]
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Solution. 7. Montrons que Fy est un idéal premier non-nul de R. Or comme F, est dans
Z on a que Py est un idéal non-nul (car xy € Py) et propre (car Py NS = ) et donc en
particulier 1 ¢ P,). Pour montrer que P est premier il reste & montrer que pour tout
a,b € R, si ab € Py alors a € Py ou b € FP,. Supposons au contraire que ab € P, avec
a ¢ Pyetb¢ Py Alors I'idéal Py est proprement inclus dans les idéaux Py + (a) et
Py + (b). Ainsi par maximalité de Py dans Z on a que Py+ (a) ¢ Z et Py+ (b) ¢ Z. Ainsi
(Po+(a)NS #Det (Po+ (b)NS #0D. Soit x € (PBy+ (a))NSetye (Py+(b)NS.
Alors on peut écrire x = p+ra et y = p' + r'b avec p,p’ € Py et r,r’ € R. Mais alors
xy = p" +rr’ab avec p” € By. Or, xy € S par la question 3. et comme ab € Py on a que
p" + rr’ab € Py qui montre que Py N S # () (car zy € Py NS) qui est une contradiction
car Py € Z. Cela montre que si ab € P, alors a € Py ou b € Fy et donc F, est un idéal
premier de R. O

Solution. 8. On vient de montrer que si R n’est pas factoriel, alors il existe un idéal
premier Py # (0) de R tel que Py NS = (). En particulier, Py ne contient aucun élément
premier de R car tout élément premier de R est dans .S. Dans la question 1. on a montré
que si R est factoriel alors tout idéal premier P # (0) de R contient un élément premier
de R. Ainsi on retrouve la caractérisation de Kaplansky des anneaux factoriels énoncée
au début de 'exercice. O

2 Corps

Préambule : Pour p premier, on note I, le corps Z/pZ. 1l sera admis que le groupe
multiplicative F¥ = F,, \ {0} est cyclique. Etant donné une extension finie de corps E/F,
le degré de F sur F' (c.-a.-d. la dimension de E comme espace vectoriel sur F') sera noté
par (E/F).

Exercice 3. On pose g(x) = z* + 1.
1. Montrer que g(x) est irréductible dans Q|x].
2. Montrer que E = Q(i,/2) est un corps de rupture de g(z) sur Q.
3. Trouver un corps de décomposition K de g(x) sur Q ainsi que le degré de K sur Q.
4. Montrer que g(z) n’est pas irréductible dans R[z] et trouver une factorisation de

g(x) dans R[z] comme produit d’irréductibles.

On propose de montrer que pour tout nombre premier p, le polynome g(z) n’est
pas irréductible dans F,[z].

5. Montrer que si —1 est un carré dans F, (par exemple quand p = 2) alors g(x) peut
s’écrire comme une différence de deux carrés et ainsi g(x) peut se factoriser dans
F,[x] comme produit de deux polynémes de degré 2.

6. Montrer que si p est impair et que 2 ou —2 est un carré dans F, alors g(x) peut
s’écrire comme une différence de deux carrés et ainsi g(x) peut se factoriser dans
[F,[z] comme produit de deux polynémes de degré 2.
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7. Montrer que si p est impair, alors parmi —1,2 et —2 il y a au moins un qui est
un carré dans [F,. En déduire que pour tout nombre premier p, g(x) n’est pas
irréductible dans FF,[x].

Solution. 1. 1l suffit de montrer que g(z) est irréductible dans Z[x]. On remarque d’abord
que g(z) = 2 + 1 n’a pas de racines dans R (sinon on aurait a* = —1 pour un certain
a € R). Ainsi si g(x) peut se factoriser dans Z[z] (ou méme dans R[z]) on aurait g(x) =
p(z)q(z) avec p(x),q(x) de degré 2. On pose p(z) = z° + ax + b et q(z) = 2> + cx + d
avec a, b, c,d € Z. On comparant le nombre de 2® des deux cotés on trouve a + ¢ = 0 ou
a = —c. On comparant les 22 des deux cotés on trouve b +d +ac =0 ou b+ d = a®. On
comparant les x des deux cotés on trouve ad +bc = 0 ou a(d — b) = 0 qui implique a = 0
oub=d. Etonabd=1. Ainsi si a = 0 on obtient b*> = —1 qui est impossible. D’autre
part si b = d alors 1 = bd = b? et donc b = +1. Mais cela donne a®> = b+ d = 2b = +2
qui est impossible dans Z (mais possible dans R.) . Ainsi g(x) est irréductible dans Z[z]
et donc irréductible dans Q|x].

On remarque que si on suppose p(z),q(z) € R|z], alors si en posant b = d = 1 et
a =2 et ¢ = —/2, on obtient la factorisation

et 1= (22 + V22 +1)(2? — V2 + 1) € R[z).

De plus ces deux polynomes dans R[z]| sont irréductibles (car ils n’ont pas de racines
dans R). On peut utiliser cette factorisation de g(x) dans R[z] pour donner une autre
démonstration que g(x) est irréductible dans Q[x]. En fait, cette factorisation de g(x)
comme produit d’irréductibles dans R|[x] est unique et donc s’il y avait une factorisation
de g(x) dans Q[z] C R[z], elle donnerait lieu & la méme factorisation que celle dans R[z].
Mais v/2 ¢ Q. O

Solution. 2. Dans C on peut factoriser
g(a) =a* +1= (2% i) (2 +14) = (v = )z + Oz — )z + )

ou ( = e’ Ainsi Q(¢) est un corps de rupture de g(x) sur Q. Il reste & montrer
que Q(¢) = Q(i,v2). Or, ¢ = 1—\;%’ € Q(i,v/2), et donc Q(¢) € Q(i,v/2). On a que
i=(? e Q(¢) et de plus comme (! = 1—{5 € Q(¢) et 1+14 € Q(¢) on obtient v/2 € Q(¢).
Ayant montré que 7,v/2 € Q(¢), on obtient Q(i,v/2) C Q(¢). O

Solution. 3. Un corps de décomposition K de g(z) est une extension minimale de Q
contenant toutes les racines de g(z). Ainsi, K = Q(&¢, =¢*) = Q(¢) qui est un corps de
rupture du polynéme irréductible g(x). Ainsi (K/Q) = degg(x) = 4. O
Solution. 4. Voir la fin de la solution a la question 1. O]

Solution. 5. Si —1 = a* avec a € F, alors

glr)=a*+1=2"—(-1)=2" —a® = (2° — a)(z* + a).
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Solution. 6. Si p est impair et 2 = a* avec a € F,, alors
glr)=a*+1=a"+22+1- 22" = (2 + 1)* — (ax)? = (2* + 1 + ax)(2* + 1 — ax).
Si —2 = a? avec a € F, alors
gr)=a*+1=2" 222 + 1+ 22% = (2 — 1)* — (az)* = (2 — 1 + az)(2* — 1 — ax).

]

Solution. 7. On suppose p premier impair. Soit a € F, est générateur du groupe cyclique
). Si —1 et 2 ne sont pas des carrés dans [, alors on a que —1 = a” et 2 = a™ avec m
et n impairs. Ainsi —2 = @™ = a?* car m + n est pair. Par application des questions 5.
et 6. on a montré que pour tout nombre premier p, le polynéme g(z) peut se factoriser
comme produit de deux polynémes de degré 2 sur FF, et donc n’est pas irréductible sur

F [l

P

Exercice 4. On pose f(z) = 2% + 23 — 52% + 3z + 1. On remarque que f(0) = f(1) =
F(=3) = 1.
1. Montrer que si f(z) = p(z)q(x) avec p(x), q(x) € Z|x], alors p(x) = g(x).
2. En déduire que f(x) est irréductible dans Z[z]. Indication : On remarque que
f(=1)=-7<0.
3. En déduire que f(z) est irréductible dans Q[z] et que Q[z]/(f(x)) est un corps de
rupture de f(x) sur Q.

4. On pose K = Q(«) ot @ € C est une racine de f(x). Soit g(x) € Q[x] un polynéme
irréductible de degré 3. Montrer que g(z) n’a pas de racines dans K.

Solution. 1. On suppose que f(z) = p(z)q(z) avec p(z),q(x) € Z[z]. Or comme f(0)
f(1) = f(=3) =1 on aque p(a) = qg(a) = =1 pour tout a € {0,1,—3}. Ainsi p(x) et g(x
sont de degrés > 2 et donc on a que degp(z) = degq(r) = 2. Mais comme p(a) = ¢(a
pour trois réels distincts (a € {0,1,—3}) on a que p(x) = ¢(x).

s =

Solution. 2. On a vu dans la question précédente que si f(z) = p(z)q(x) avec p(x), q(z) €
Z|x] alors p(x) = q(z) qui veut dire que f(x) = p*(z). Mais comme f(—1) = —7 < 0, il
s’ensuit que f(z) n’est pas un carré. Cela montre que f(x) est irréductible dans Z[z]. O

Solution. 3. Comme f(x) est irréductible dans Z[z], par application du lemme de Gauss
il s’ensuit que f(z) est irréductible dans Q[z]. Ainsi (d’aprés les résultats de cours)
Q[z]/(f(x)) est un corps de rupture de f(x) sur Q. O

Solution. 4. On pose K = Q(«) ot av € C est une racine de f(z). Alors K est un corps
de rupture du polynoéme irréductible f(z) sur Q. Ainsi (K/Q) = deg f(x) = 4. Or, si
f € K est racine d'un polynéme irréductible g(x) € Q[z] de degré 3, alors on aurait

Q C Q(B) C K avee (Q(B)/Q) = 3. Mais alors 4 = (K/Q) = (K/Q(8))(Q(8)/Q) qui est

une contradiction car 4 n’est pas divisible pas 3. O
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3 Représentations de groupes

Préambule : Par représentation d’'un groupe fini G on entendra un morphism py :
G — GL(V) ou V est un C-espace vectoriel non-nul de dimension finie. La dimension de
V' est appelée le degré de la représentation py .

Exercice 5. On pose G = (a,b,c|a®> =0} =3 =1;ac=ca; bc=ch; c=b"raba™"). 1l
sera admis que G est un groupe non-abélien d’ordre 27 ayant 11 classes de conjugaison.
De plus tout ¢ € G peut s’écrire de maniére unique sous la forme ¢ = c'ba* avec
0<1i4,5,k < 2.

1.

Montrer que pour toute représentation irréductible p : G — GL(V), on a que le
degré de p est inférieur ou égal a 3.

. Montrer que G admet neuf représentations de degré 1, aucune représentation irré-

ductible de degré 2, et deux représentations irréductibles de degré 3. On notera p;
(1 <1 <9) les neuf caractéres de degré 1 (avec p; la représentation triviale) et x;
(7 =1,2) les deux caractéres irréductibles de G de degré 3.

Déterminer les neuf représentations p; de G de degré 1. Il suffit de préciser les
valeurs p;i(a), pi(b) et pi(c).

Montrer que le centre Z(G) = {1,¢,c*}. En déduire que {1},{c},{c?} sont des
classes de conjugaison.

On pose
L -1+ \/§Z
-2

Montrer que pour tout g € G'\ {1, ¢, c?}, ils existent 2 < i, j < 9 tels que p;(g) = w
et pj(g) = w?.

En déduire que x;(g) = 0 pour tout g € G\ {1,¢,c*} et j = 1,2. Rappel : Le
produit d'un caractére de degré 1 avec un caractere irréductible est un caractére
irréductible.

Montrer qu’il existe un caractére irréductible x de G tel que x(c) ¢ R. Indication :
Si x(c) € R, alors x(c?) = x(c). Pourquoi ?

8. En déduire que x;(c) ¢ R pour j = 1,2 et que x2(g) = x1(g) pour tout g € G.

9. Montrer que

10.

3433
B 2
Bonus : Compléter la table des caractéres de GG sans calculer explicitement les

classes de conjugaison. Il faudra juste distinguer les classes de cardinalité 1 de
{1,¢,c*}. Les autres classes on pourra les noter [g4], [g5], - - -, [g11]-

xi(c) € {3w, 3w?}.

Solution. 1. G admet 11 classes de conjugaison et donc 11 représentations irréductibles.
De plus, la somme des carrés des degrés des représentations irréductibles est égal a 27 qui
est |G]. Ainsi, 8'il y avait une représentation irréductible de degré 4, alors on aurait que
11=27—16 =d? +d5+ -+ + d3, avec d; € N* qui est impossible. De méme, G n’admet
pas de représentations irréductibles de degré > 5. O



Master Mathématiques et applications — MG1 - Anneaux, corps et représentation 2024/2025 8

Solution. 2. Pour 1 <14 < 3, on note n; le nombre de représentations irréductibles de G
de degré i. On a ainsi que nq + 4ns + 9ng = 27 et nq +no +n3 = 11. Ainsi 3ny + 8nz = 16
et donc ny est divisible par 8 qui implique (par la premiére équation) que ny = 0. Ainsi
ny=2etdoncn =11-2=09. O

Solution. 3. Soit p : G — C* une représentation de degré 1. One pose a=p(a), B = p(b)
et v = p(c). Ainsi par application des relations dans G on trouve o = 32 = 43 =
v =pB"tafat =1. On note w = 3. Ainsi, on a que o, f € {1,w,w?} et v = 1 Comme
on a 3 choix pour « et 3 choix pour 3 on retrouve les 9 caractéres de degré 1 dans la
question précédente. O

Solution. 4. On remarque dans les relations de G que 1’élément ¢ commute avec a et b.
Comme G est engendré par a, b, c, il s’ensuit que ¢ (et donc aussi ¢?) est dans le centre
de G. Ainsi {1,¢,¢*} C Z(G). Montrons que |Z(G)| = 3. Comme G est non-abélien, si
|Z(G)| > 3, on aurait que |Z(G)| = 9. Si |Z(G)| = 9, alors pour tout x € G\ Z(G) on
aurait que |C(z)| = 27 ou C(x) = {g € G|gx = xg}. En fait Z(G) U {z} C C(z) et
donc |C(x)| > 10. D’autre part, comme C(z) est un sous-groupe de G, son cardinal divise
27. Or, si |C(z)| = 27, alors C(z) = G et donc x € Z(G), une contradiction. Pour tout
z € Z(@) on a que la classe de conjugaison [z] = {gzg~'|g € G} = {z}. O

Solution. 5. Soit g € G\ {1, ¢, c*}. Alors on peut écrire g = ¢"b*a’ avec avec 0 < r,s,t < 2
et s # 0 out # 0. On peut supposer que s # 0 et donc s = 1,2. On pose p,p’ : G — C*
avec p(a) = p(c) = 1 et p(b) = w et p'(a) = p'(c) = 1 et p/(b) = w?. Ainsi, si s = 1, il
suffit de prendre p; = p et p; = p’ et si s =2 on prends p; = p’ et p; = p. O]

Solution. 6. Supposons au contraire qu’il existe g € G'\ {1, ¢, ¢*} et un caractére irréduc-
tible x de G de degré 3 tel que x(g) # 0. Par la question précédente il existe 2 <i,7 <9
tels que p;(9) = w et p;(g) = w?. Ainsi x,pix et pjx sont trois caractéres irréductibles
de degré 3 distincts (car x(g), pi(9)x(9) = wx(g) et p;(9)x(9) = w?x(g) sont deux a
deux distincts). Cela est en contradiction avec la question 2 car G admet seulement deux
caractéres irréductibles de degré 3. [

Solution. 7. Supposons au contraire que y(c) € R pour tout caractére irréductible y de
G. Alors x(¢?) = x(¢') = x(¢) = x(c). Ainsi, dans la table des caractéres de G' on
aurait que la colonne correspondant a la classe de conjugaison {c} est égal a la colonne
correspondant & la classe de conjugaison {c?}. Cela est une contradiction car les colonnes
dans la table des caractéres de G sont orthonormaux. ]

Solution. 8. Dans la question 3. on a montré que p;(c¢) =1 € R pour tout 1 < i < 9. Ainsi
par application de la question 7., il s’ensuit que x1(c) ¢ R ou x2(c) ¢ R. On peut supposer
que x1(c) ¢ R. Ainsi on pose x1(c) = z =1+ si et xa(c) = 2/ = 1" + §'i avec s # 0. Or,
I'orthogonalité des colonnes {1} et {c¢} donne 9+ 32+ 32’ =0 ainsi 2+ 2/ = -3 € Ret
donc ' = —s. D’autre part Porthogonalité des colonnes {c} et {c?} donne 9+ 22+ 22 = 0
et donc 0 = Im(2% + 2) = 2s(r — 1) Ainsi 7 = /et donc 2’ = 7, c.a.d., xa2(c) = x1(c).
On a aussi que x1(c?) = x1(c) = x2(c) et xa(c¢?) = xa(c). Pour tout g € G\ {1,¢,¢*} on
a X;(g) =0 pour j =1,2. Ainsi x1(g) = x2(g) pour tout g € G. O
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Solution. 9. Dans la question précédente on a montré que yi(c) + xa(c) = z + 2/ =
z+%Z = 2r = =3 et donc r = —3/2. En prenant le produit scalaire de la colonne
{c} avec elle méme on trouve 27 = 9+ |z|* + |Z]*> = 9 + 2|2]* et donc |z| = 3. Ainsi

s =4./32 - (=3/2)2 = £,/27/4 = +3V/3/2. O



